3.55 \(\int \frac{\sec ^2(c+d x)}{(a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=55 \[ \frac{2 \tan (c+d x)}{3 d \left (a^2 \sec (c+d x)+a^2\right )}-\frac{\tan (c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[Out]

-Tan[c + d*x]/(3*d*(a + a*Sec[c + d*x])^2) + (2*Tan[c + d*x])/(3*d*(a^2 + a^2*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0656275, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {3797, 3794} \[ \frac{2 \tan (c+d x)}{3 d \left (a^2 \sec (c+d x)+a^2\right )}-\frac{\tan (c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + a*Sec[c + d*x])^2,x]

[Out]

-Tan[c + d*x]/(3*d*(a + a*Sec[c + d*x])^2) + (2*Tan[c + d*x])/(3*d*(a^2 + a^2*Sec[c + d*x]))

Rule 3797

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[e + f*x]*(a
 + b*Csc[e + f*x])^m)/(f*(2*m + 1)), x] + Dist[m/(b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1),
 x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{(a+a \sec (c+d x))^2} \, dx &=-\frac{\tan (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac{2 \int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{3 a}\\ &=-\frac{\tan (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac{2 \tan (c+d x)}{3 d \left (a^2+a^2 \sec (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.0666604, size = 45, normalized size = 0.82 \[ \frac{\left (3 \sin \left (\frac{1}{2} (c+d x)\right )+\sin \left (\frac{3}{2} (c+d x)\right )\right ) \sec ^3\left (\frac{1}{2} (c+d x)\right )}{12 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + a*Sec[c + d*x])^2,x]

[Out]

(Sec[(c + d*x)/2]^3*(3*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2]))/(12*a^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.028, size = 32, normalized size = 0.6 \begin{align*}{\frac{1}{2\,d{a}^{2}} \left ({\frac{1}{3} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+a*sec(d*x+c))^2,x)

[Out]

1/2/d/a^2*(1/3*tan(1/2*d*x+1/2*c)^3+tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.12465, size = 62, normalized size = 1.13 \begin{align*} \frac{\frac{3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{6 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

1/6*(3*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a^2*d)

________________________________________________________________________________________

Fricas [A]  time = 1.52225, size = 123, normalized size = 2.24 \begin{align*} \frac{{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{3 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/3*(cos(d*x + c) + 2)*sin(d*x + c)/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sec ^{2}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec{\left (c + d x \right )} + 1}\, dx}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*sec(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)**2/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x)/a**2

________________________________________________________________________________________

Giac [A]  time = 1.32052, size = 42, normalized size = 0.76 \begin{align*} \frac{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{6 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(tan(1/2*d*x + 1/2*c)^3 + 3*tan(1/2*d*x + 1/2*c))/(a^2*d)